get_estimation_median.Rd
This function allows you to estimate median variable at universe level.
get_estimation_median(
data = ech::toy_ech_2018,
variable = NULL,
by.x = NULL,
by.y = NULL,
domain = NULL,
level = NULL,
ids = NULL,
numero = "numero",
estrato = NULL,
pesoano = "pesoano",
name = "estimacion"
)
data frame with ECH microdata
data frame column to estimate
data frame column
data frame column
subpopulation reference setted as character expresion of logical evaluation
is household ("h") or individual ("i").
ids
household id
strata
weights
name for the estimation new column
table
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
# \donttest{
get_estimation_median(data = ech::toy_ech_2018, variable = "ht11", by.x = "dpto", level = "h")
#> These confidence intervals are only an approximation of the correct confidence intervals
#> that arise from fully defining the sample design
#> # A tibble: 19 x 4
#> dpto estimacion estimacion_low estimacion_upp
#> <fct> <dbl> <dbl> <dbl>
#> 1 Montevideo 75072 67048 85239
#> 2 Artigas 54381 24590. 85147
#> 3 Canelones 63672 46912 74184
#> 4 Cerro Largo 39192 22025 59188
#> 5 Colonia 66693 38034 113299
#> 6 Durazno 32050 25024 NaN
#> 7 Flores 110105 110105 110105
#> 8 Florida 61801 38550 78552
#> 9 Lavalleja 42048 19046 NaN
#> 10 Maldonado 57426 41898. 89676
#> 11 Paysandú 42392. 31600 74625
#> 12 Río Negro 52390. NaN NaN
#> 13 Rivera 53270 40000 106010
#> 14 Rocha 44485 36170 75000
#> 15 Salto 50488 41780 73445
#> 16 San José 54517 44564. 63955
#> 17 Soriano 45505 34169 97684
#> 18 Tacuarembó 41807 27344 77014
#> 19 Treinta y Tres 48015 NaN NaN
# }